Вход |  Регистрация
 
 
Время электроники Вторник, 6 декабря
 
 


Это интересно!

Новости

Итоги Форума и премии «Живая электроника России - 2016»


Обзоры, аналитика


Интервью, презентации

Ранее

Самоуправляемые кресла облегчат нашу участь в очередях

Технологии автономной езды, которые автопроизводитель Nissan применяет для своих автомобилей, теперь облегчат жизнь тем, кто вынужден отстаивать гигантские очереди за последней моделью айфона, за билетами в Уимблдон, да хотя бы в почтовое отделение.

Intel вслед за Apple хоронит 3,5-мм аудиоразъём

Спецификации USB Audio Device Class 3.0 помогут вытеснить 3,5-мм аудиоразъём.

Создан дрон с беспроводным питанием

Британский изобретатель из Императорского колледжа в Лондоне создал прототип дрона, который может находиться в полёте, по его словам, сколь угодно долго.

Реклама

По вопросам размещения рекламы обращайтесь в отдел рекламы

Реклама наших партнеров

 

11 октября 2016

Новая технология памяти от Fujitsu увеличивает масштабы нейронных сетей для глубинного обучения

Компания Fujitsu объявила о разработке технологии, которая оптимизирует использование внутренней памяти графических процессоров (GPU) с целью поддержать увеличивающиеся масштабы нейронных сетей, используемых для повышения точности машинного обучения.

Н

овая разработка позволяет увеличить масштаб нейронных сетей.

«На протяжении последних лет технология глубинного обучения все активнее используется специалистами в качестве метода машинного обучения, который имитирует структуру человеческого мозга. Чем больше слоев имеет нейронная сеть, тем точнее она обрабатывает рабочие задачи, например, задачи по распознаванию и систематизации. Для повышения точности масштаб сетей увеличивался, но время обучения также возрастало. Поэтому специалисты обратили свое внимание на графические процессоры, которые выполняют вычисления больших объемов данных, и на технологию, ускоряющую процесс обработки данных, используя параллельно несколько графических процессоров, как это происходит в суперкомпьютерах», — рассказали в компании.

Одним из методов увеличения масштаба глубинного обучения является распределение одной модели нейронной сети на нескольких компьютерах и выполнение вычислений параллельно. Но большой объем данных, который должен передаваться между компьютерами, создает «пробки», значительно снижая скорость выполнения задач, пояснили в Fujitsu. Для того чтобы воспользоваться всеми возможностями графических процессоров для высокоскоростных вычислений, данные должны храниться во внутренней памяти самих процессоров. Однако этот объем, как правило, меньше объема памяти обычных компьютеров, что ограничивает возможности по увеличения масштаба нейронных сетей.

Fujitsu разработала технологию для оптимизации использования памяти и увеличения масштаба нейронных сетей для вычислений с одним графическим процессором. В новинке не используются методы параллельной организации работы, которые значительно уменьшают скорость чтения. Новая технология уменьшает необходимый объем памяти за счет повторного использования ресурсов: она позволяет в независимом режиме выполнять вычисления для создания данных промежуточных ошибок из взвешенных данных и вычисления для создания взвешенных данных из промежуточных данных. Когда обучение начинается, структура каждого слоя нейронной сети анализируется, и порядок вычислений изменяется для того, чтобы область памяти, в которой расположен больший объем данных, могла повторно использоваться, отметили в компании.

Fujitsu использовала новую технологию в рамках платформы для глубинного обучения с открытым исходным кодом Caffe, измерив уровень потребления внутренней памяти GPU. После запуска обучения технология анализирует структуру нейронной сети и оптимизирует порядок выполнения вычислений и расположение данных в памяти для того, чтобы свободная область памяти могла повторно использоваться. При использовании ее совместно с AlexNet и VGGNet, нейронными сетями распознавания изображений, которые используются для научных исследований, новая технология Fujitsu до 2 раз увеличила масштаб нейронной сети по сравнению с предыдущими аналогами. Таким образом, используемый объем внутренней памяти графического процессора, по оценкам компании, был уменьшен более чем на 40%.

Fujitsu планирует начать серийное использование новой технологии с 31 марта 2017 г. в рамках проекта искусственного интеллекта Human Centric AI Zinrai. Кроме того, компания планирует использовать эту технологию вместе с ранее представленной технологией для обработки данных в рамках глубинного обучения методом параллелизации графических процессоров.

Комментарии

0 / 0
0 / 0

Прокомментировать







 
 
 




Rambler's Top100
Руководителям  |  Разработчикам  |  Производителям  |  Снабженцам
© 2007 - 2016 Издательский дом Электроника
Использование любых бесплатных материалов разрешено, при условии наличия ссылки на сайт «Время электроники».
Создание сайтаFractalla Design | Сделано на CMS DJEM ®
Контакты