Вход |  Регистрация
 
 
Время электроники Вторник, 13 ноября
 
 


Это интересно!

Новости


Обзоры, аналитика

Итоги Премии «Живая электроника России — 2018»


Интервью, презентации

Ранее

Современные методы передачи данных

В статье рассматривается концепция передачи мультимедийных данных с высокой скоростью с помощью трансиверов SerDes. Эти устройства имеют ряд преимуществ при передаче больших объемов данных, обеспечивая приемлемое энергопотребление, производительность и стоимость системы. Кроме того, обсуждаются аналогово-цифровые методы коррекции сигнала при его распространении по кабелям длиной более 300 м.

Основы проектирования с помощью силовых ключей MOSFET

Многим разработчикам, особенно не специалистам в области управления электропитанием, использование силовых ключей может показаться сложной задачей. Однако в таких приложениях как портативные электронные приборы, потребительская электроника, промышленные или телекоммуникационные системы все чаще используются силовые ключи. В статье описываются важные характеристики силовых ключей и концепции их применения, а также возможные оптимальные решения.

ЦАП. Так ли все просто?

В статье рассмотрены принцип работы и основные параметры цифро-аналоговых преобразователей. Даны рекомендации по выбору и проектированию ЦАП.

Реклама

По вопросам размещения рекламы обращайтесь в отдел рекламы

Реклама наших партнеров

 

3 мая

Проектирование снабберных схем

В статье рассматриваются эффективные методы повышения надежности MOSFET в обратноходовых преобразователях.



П

ринцип работы обратноходовых преобразователей основан на накоплении энергии в трансформаторе при открытом состоянии силового ключа с последующей передачей этой энергии на выход устройства во время закрытого состояния ключа. Обратноходовой трансформатор состоит из двух или более взаимосвязанных обмоток на сердечнике с воздушным зазором, в котором и хранится магнитная энергия до тех пор, пока она не будет передана во вторичную цепь. На практике никогда не удается добиться идеального коэффициента связи между обмотками, поэтому не вся энергия проходит через этот воздушный зазор.

Небольшое количество энергии накапливается внутри и между обмотками. Это явление называется индуктивностью рассеяния трансформатора. При открытии ключа энергия, накопленная в индуктивности рассеяния, не передается во вторичную обмотку, приводя к возникновению высоковольтных всплесков в первичной обмотке трансформатора и в ключе. Кроме того, эта энергия вызывает высокочастотный колебательный процесс в контуре, состоящем из эффективной емкости открытого ключа, индуктивности первичной обмотки и индуктивности рассеяния трансформатора (см. рис. 1).

Рис. 1. Переходные процессы в стоке транзистора, вызванные индуктивностью рассеяния трансформатора

Если пиковое напряжение всплеска превысит напряжение пробоя переключающего элемента, чаще всего, силового транзистора MOSFET, это приведет к выходу из строя всего устройства. Более того, колебания высокой амплитуды на стоке транзистора вызывают сильные электромагнитные помехи. В источниках питания мощностью выше 2 Вт для ограничения всплесков напряжения на MOSFET используются ограничительные (снабберные) схемы, которые позволяют рассеивать энергию, накопленную в индуктивности рассеяния.

Принцип работы снабберной схемы

Снабберная схема используется для ограничения максимального напряжения на MOSFET до заданного значения. Как только напряжение на MOSFET достигает порогового значения, вся дополнительная энергия рассеяния перенаправляется в снабберную схему, где она либо накапливается и медленно рассеивается, либо возвращается в преобразователь. Одним из недостатков ограничительных схем является то, что они рассеивают энергию, снижая эффективность. В связи с этим существует несколько типов ограничительных схем (см. рис. 2). В некоторых из них используются стабилитроны (диоды Зенера), позволяющие снизить потребление мощности. Однако из-за резкого включения стабилитронов в таких схемах часто возникают электромагнитные помехи. Ограничительные схемы RCD обеспечивают хороший баланс между эффективностью, генерацией электромагнитных помех и стоимостью и потому получили наибольшее распространение.

Рис. 2. Типы ограничительных схем

Ограничительная схема RCD работает следующим образом. Сразу же после закрытия MOSFET диод во вторичной цепи остается обратно смещенным, и ток намагничивания заряжает емкость стока (см. рис. 3а). Когда напряжение в первичной обмотке достигает величины выходного отраженного напряжения VOR, определяемого соотношением витков трансформатора, открывается диод во вторичной цепи, и энергия намагничивания передается во вторичную обмотку. Энергия рассеяния продолжает заряжать трансформатор и емкость стока до тех пор, пока напряжение в первичной обмотке не станет равным напряжению на конденсаторе ограничительной схемы (см. рис. 3б).

Рис. 3. Первичная цепь ограничительной схемы

В этот момент открывается блокирующий диод, и энергия рассеяния направляется через конденсатор ограничительной схемы (см. рис. 4а). Протекающий через конденсатор ток заряда ограничивает пиковое напряжение на стоке транзистора до величины VIN(MAX) + VC(MAX). После того как энергия рассеяния полностью передана, блокирующий диод запирается, а конденсатор ограничительной схемы до начала следующего цикла разряжается через резистор этой же схемы (см. рис. 4б). Последовательно с блокирующим диодом часто ставят дополнительный небольшой резистор, предназначенный для подавления любых колебательных процессов, возникающих в контуре из индуктивности трансформатора и конденсатора ограничительной схемы в конце цикла заряда. На рисунке 5 показаны циклические пульсации напряжения VDELTA, наблюдаемые в ограничительной схеме, амплитуда которых определяется величиной конденсатора и резистора, стоящих параллельно друг другу.

Рис. 4. Первичная цепь ограничительной схемы

Рис. 5. Измерение напряжения в ограничительной схеме RCD

Принцип работы ограничительной схемы RCDZ аналогичен принципу работы RCD-схемы, за исключением того, что рассеиваемая энергия делится между стабилитроном и стоящим последовательно с ним резистором (см. рис. 2). Стабилитрон предотвращает конденсатор от разряда ниже уровня блокирующего напряжения стабилитрона, что ограничивает рассеяние мощности и улучшает эффективность, особенно при небольших нагрузках. Схема ZD обеспечивает жесткое ограничение напряжения на MOSFET, определяемое величиной блокирующего напряжения стабилитрона. И, наконец, ограничительная схема RCD+Z работает, как и RCD-схема, но введение в нее стабилитрона обеспечивает безопасное ограничение напряжения на MOSFET во время переходных процессов. Как и RCD-схема, она характеризуется пониженной генерацией электромагнитных помех во время нормального режима.

При разработке ограничительных схем необходимо учитывать параметры как трансформатора, так и MOSFET. Если минимальное ограничивающее напряжение ниже VOR трансформатора, ограничительная схема работает как нагрузка. При этом теряется большее количество энергии, чем при рассеивании, что снижает эффективность. При выборе компонентов ограничительной схемы меньших размеров, чем требуется, они перегреваются, не справляются с опасными напряжениями и генерируют электромагнитные помехи. Необходимо, чтобы ограничительная схема обеспечивала защиту MOSFET от любых всплесков входного напряжения питания, тока нагрузки и учитывала допуски на компоненты.

Компания Power Integrations опубликовала руководство по проектированию ограничительных схем Clamp Sizing Design Guide (PI-DG-101), в котором приведена поэтапная последовательность подбора компонентов для четырех основных типов ограничительных схем, применяемых в обратноходовых источниках питания. Это руководство предназначено для использования совместно с программным пакетом PI Expertä. Данная интерактивная программа автоматически подбирает на основе параметров источника питания пользователя все компоненты (включая характеристики трансформатора), необходимые для генерации требуемого рабочего напряжения импульсного источника питания. PI Expertä автоматически создает ограничительную схему, которая, впрочем, слегка отличается от схемы, спроектированной по алгоритму из упомянутого руководства.

Проектирование ограничительной схемы RCD

Ниже приведена последовательность шагов при проектировании ограничительной схемы RCD (подробнее см. руководство Clamp Sizing Design Guide). Все перечисленные ниже значения, не измеренные и не определенные пользователем, следует искать в таблице результатов проектирования PI Expert.

  1. Измерьте LL — индуктивность рассеяния первичной цепи трансформатора.
  2. Проверьте fs — частоту переключения источника питания.
  3. Определите Ip — точное значение тока в первичной цепи.
  4. Определите полное напряжение в первичной цепи MOSFET и рассчитайте Vmaxclamp при помощи следующего выражения:

 

   ( Примечание: предусмотрите для MOSFET запас, по крайней мере, в 50 В ниже уровня BVDSS, а дополнительно к нему — запас в 30–50 В на всплески напряжения при переходных процессах).

      5. Определите Vdelta — амплитуду пульсаций в ограничительной схеме.

      6. Рассчитайте минимальное напряжение в ограничительной схеме:

 

 

           7. Рассчитайте среднее напряжение в ограничительной схеме:

 

           8. Рассчитайте энергию, накопленную в индуктивности рассеяния:

        

           9. Оцените Eclamp — энергию, рассеиваемую в ограничительной схеме:

 

 

      10. Рассчитайте величину резистора в ограничительной схеме:

 

      11. Расчетная мощность резистора в ограничительной схеме должна быть больше, чем:

 

      12. Рассчитайте емкость конденсатора в ограничительной схеме:

 

 

    13.  Расчетное напряжение на конденсаторе в ограничительной схеме должно быть больше, чем 1,5Vmaxclamp.

    14. В качестве блокирующего диода в ограничительной схеме необходимо использовать диод с коротким или очень коротким временем восстановления.

    15. Пиковое обратное напряжение блокирующего диода должно быть больше, чем 1,5Vmaxclamp.

    16. Расчетный пиковый ток прямого смещения должен быть больше IP. Если этот параметр не перечислен в таблице данных, средний расчетный ток прямого смещения должен быть больше 0,5IP.

    17. Величина демпфирующего резистора (если он используется) выбирается из соотношения:

 

    18. Расчетная мощность демпфирующего резистора должна быть больше, чем

.

 

После проведения первоначальных расчетов для проверки рабочих характеристик источника питания необходимо сконструировать прототип такого устройства, поскольку индуктивность рассеяния трансформатора может значительно меняться в зависимости от техники намотки. В некоторых случаях следует измерить среднее напряжение Vclamp и сравнить его с рассчитанным в п. 7 значением (см. рис. 5). В случае существенных различий этих значений можно произвести корректировку Rclamp. Если полученные результаты существенно отличаются от ожидаемых, расчет следует повторить с использованием уточненных данных.

Для расчета параметров ограничительных схем других типов используют аналогичную последовательность шагов, добавляя шаги для каждого нового элемента. Следует быть очень внимательными при выборе диодов и стабилитронов — у них должна быть соответствующая мощность. Почти во всех случаях применения стабилитронов для обеспечения требуемой пиковой мгновенной мощности необходимо использовать цепи подавления всплесков напряжений при переходных процессах.

Расчетная мощность компонентов проверяется методом измерения температур корпусов компонентов в то время, когда источник питания работает на полную нагрузку при минимальном входном напряжении. Если рабочая температура какого-либо компонента схемы выходит за установленные производителем пределы, компонент следует заменить, а схему необходимо тщательно проверить.



Вы можете скачать эту статью в формате pdf здесь.
Оцените материал:

Автор: Пол Лэйси (Paul Lacey), инженер по применению, Power Integrations



Комментарии

0 / 0
0 / 0

Прокомментировать





 

Горячие темы

 
 




Rambler's Top100
Руководителям  |  Разработчикам  |  Производителям  |  Снабженцам
© 2007 - 2018 Издательский дом Электроника
Использование любых бесплатных материалов разрешено, при условии наличия ссылки на сайт «Время электроники».
Создание сайтаFractalla Design | Сделано на CMS DJEM ®
Контакты