Лазер заставил двигаться левитирующий графит


Японские инженеры научились двигать левитирующий в магнитном поле графит при помощи лазерного луча.

Работа ученых опубликована в журнале Journal of the American Chemical Society, а ее краткое содержание можно прочитать на сайте Phys.Org.

Диамагнетики, в отличии от пара- и тем более ферромагнетиков, попадая в магнитное поле, отталкиваются от него. Однако, сила отталкивания обычно невелика, и для эффекта левитации требуется сильное магнитное поле.

Левитация графита основана на его выраженных диамагнетических свойствах. Ранее ученые показали, что у пиролитического графита отталкивание в магнитном поле настолько велико, что способно преодолевает силу гравитационного притяжения даже при использовании обычных (не сверхпроводящих) стационарных магнитов.

Авторы новой работы обратили внимание на то, что диамагнетические свойства, а, следовательно и сила отталкивания в магнитном поле, сильно зависят от температуры.

Движение графитового диска по полю из постоянных магнитов. Иллюстрация Kobayashi, et al. 2012/American Chemical Society

Ученые показали, что при равномерном нагревании левитирующего графитового диска лазерным лучом, он постепенно опускается. Если нагревать такой диск только с одной стороны, графитовая «шайба» начинает двигаться над полем стационарных магнитов в сторону более горячего края. Кроме того, если диск поместить над одиночным магнитом и нагреть его несимметрично, графит начинает вращаться.

Левитирующее движение в магнитном поле хорошо известно ученым. Транспортные средства, которые используют этот эффект, называются маглевы. Один из самых известных маглевов — выкоскоростной поезд, соединяющий шанхайское метро с аэропортом Пудун. Однако, в существующих маглевах управление движением осуществляется при помощи переменного магнитного поля, а не изменения свойств двигающегося тела.

Читайте также:
Графит заподозрили в сверхпроводимости при комнатной температуре
Наноконденсатор: новый подход к получению унифицированных керамических емкостных элементов
Графен в электронике: сегодня и завтра
Графеновую подложку научились выращивать в промышленных масштабах
Химически модифицированный графен для новой электроники
Графеновые микросхемы толщиной в один атом углерода могут создаваться крупносерийно
Графен можно выращивать дешево

Источник: Lenta.ru

Оставьте отзыв

Ваш емейл адрес не будет опубликован. Обязательные поля отмечены *