Российские физики открыли способ создания сверхтонких алмазов для графеновой электроники


Если углерод в виде нескольких слоев графена обработать водородом, он способен превращаться в диаман – сверхтонкую алмазную пленку. Такое открытие сделала российско-американская группа физиков.

Открытие, которые совершила российско-американская группа физиков под руководством Павла Сорокина из Технологического института сверхтвердых и новых углеродных материалов, опубликовано в двух статьях в Nano Letters и Physical Chemistry Letters.

Метод создания диамана удалось обнаружить с помощью компьютерного моделирования ab initio, то есть расчета поведения атомов из первых принципов, без грубых упрощений. Такое моделирование позволяет получить данные, очень близкие к экспериментальным. Кроме того, оно позволяет проследить, как развивается переход одной формы вещества в другую на атомарном уровне.

Диаграмма давления аллотропных модификаций углерода. Изображение: Павел Сорокин

В общих чертах процесс выглядит так: присоединение водорода к атомам внешних слоев графена приводит к изменению их типа гибридизации с плоской (sp2) на тетраэдрическую (sp3). У внешних атомов углерода появляются неспаренные электроны, которые стремятся образовать связи с атомами других слоев. Начавшись в одном месте, процесс развивается по принципу домино, пока весь лист многослойного графена не превратится в диаман, то есть в тонкий, «квазиплоский» алмаз.

Такие плоские алмазные листы можно использовать в качестве диэлектрика для наноразмерных конденсаторов. Кроме того, как показано в статье Physical Chemistry Letters, аналог диамана для гексагонального алмаза (лонсдейлита) обладает исключительной механической прочностью, уступающей только графену.

По словам Сорокина, ранее ученые уже наблюдали в экспериментах образование связей между слоями графена под действием адсорбции атомов. До сих пор, однако, физика этого процесса была не ясна, равно как и условия, которые требуются этого «химически индуцированного фазового перехода».

Двумерные и квазидвумерные вещества стали популярным объектом исследования физиков после открытия Андреем Геймом и Константином Новоселовым графеном. Ключевой особенностью графена является уникальная подвижность электронов. Однако, в отличие от кремния графен не может сам по себе использоваться при создании транзисторов, так как является металлом, а не полупроводником. Для исправления этого недостатка ученые предлагают либо помещать графен на специальные подложки, либо использовать другие двумерные вещества. Среди последних конкурентов графена – квазиплоский pmmn-бор, электронные свойства которого очень похожи на графен.

Читайте также:
Арсенид бора оказался для электроники лучше дорогого алмаза
Алмазы для электроники – новейшая продукция из Кремниевой долины
Алмазный теплоотвод для РЧ-кристаллов GaN-на-SiC
Создан самый маленький в мире алмазный транзистор
Защищенный квантовый компьютер создан внутри алмаза
Графен научились складывать в многослойные п/п-гетероструктуры
Создан 3D-графен, который может совершить суперконденсаторную революцию
Создан первый транзистор на альтернативе графена из фосфора
Графен «победил» отсутствие запрещенной зоны с помощью небулевой логики
Физики из Кореи превратили графен в полупроводник с помощью «мельницы»
Графен позволил в 100 раз ускорить оптические коммутаторы
Создана революционная графен-йодная топливная ячейка без платины
Графен в электронике: сегодня и завтра

Источник: Лента.ру

Оставьте отзыв

Ваш емейл адрес не будет опубликован. Обязательные поля отмечены *