![]() |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() Это интересно!Новости Россия признала неспособность самостоятельно создавать электронику для спутников Toshiba отменит продажу полупроводникового производства при одном условии
РанееПрименение FPGA в промышленных системах управления электроприводомЕжедневно в мире производится более 20 млн. электродвигателей или более 7 млрд. в год. По оценкам экспертов, электродвигатели потребляют более 50% всей производимой энергии в США, поэтому задача создания высокоэффективной системы управления электроприводом является очень важной. В статье обсуждаются особенности построения эффективных систем управления электродвигателями с использованием FPGA, возможности применения FPGA в промышленных сетях и вопросы выбора оптимальной системы управления электроприводом. КПД электродвигателя и коррекция коэффициента мощностиВ настоящее время вопросы повышения энергоэффективности электроприводов выходят на первый план в промышленных приложениях. В статье рассмотрены такие методы улучшения КПД электродвигателя как применение оптимальных алгоритмов управления и контроль коэффициента мощности (ККМ). Показано, что активная ККМ позволяет существенно улучшить энергоэффективность системы. Описаны различные варианты построения архитектуры выпрямителя и инвертора электродвигателя с активной ККМ и методы реализации алгоритмов управления с помощью DSP, ASSP и FPGA. Управление ориентацией поля в электроприводахМетод управления ориентацией поля в электроприводах с регулированием скорости вращения улучшает динамические параметры, позволяет выбрать оптимальный электродвигатель и улучшить эффективность системы. В статье описаны базовые принципы метода, построение схемы управления и применение цифровых сигнальных контроллеров для эффективной реализации системы. Статья представляет собой перевод [1]. Прим.: В статье оставлена терминология оригинала. В русскоязычной литературе чаще употребляется термин «векторное управление». |
12 ноября Семейство драйверов шаговых двигателей AMIS-30xxx от ON SemiconductorШаговые двигатели в настоящее время имеют широкий ряд применений. Они используются в механических приводах многих устройств, таких как компьютерная периферия, видео- и цифровые камеры, автомобильные зеркала, камеры охранного наблюдения, текстильное оборудование, системы жизнеобеспечения и т.д. До недавнего времени компания ON Semiconductor не производила микросхемы драйверов биполярных шаговых двигателей, которые могли бы составить конкуренцию известным производителям — Allegro Microsystems, STMicroelectronics, TI, Toshiba, Infineon и др.С
итуация изменилась после того, как ON Semiconductor приобрела в декабре 2007 г. компанию AMI Semiconductor (AMIS), широко известную разработкой и производством заказных и специализированных ИС для автомобильного, медицинского и промышленного секторов рынка. Продукция этой фирмы характеризуется высоким качеством и уровнем интеграции аналоговой и цифровой технологий. Разработки AMI Semiconductor сохранили свой индекс в названиях — AMIS, но теперь выпускаются под брендом ON Semi. Одной из удачных разработок компании в 2005 г. стала серия драйверов для шаговых двигателей AMIS-30xx. По сути, она ознаменовала очередной этап эволюции архитектуры и технологии драйверов шаговых двигателей (ШД). Для того чтобы по достоинству оценить уровень разработок AMIS, рассмотрим процесс эволюции микросхем для ШД от различных производителей. Начало внедрения шаговых двигателейШаговые двигатели были разработаны в начале 1960 гг. как более дешевая альтернатива позиционным сервоприводам для применения на растущем рынке периферийных компьютерных устройств. Главное преимущество ШД — обеспечение точного позиционирования без применения датчиков положения обратной связи. Это преимущество значительно снизило цену систем приводов компьютерной периферии и сделало ее массовым и доступным изделием. По мере совершенствования параметров, удешевления производства, а также упрощения и удешевления схем управления шаговые двигатели завоевали популярность и в других приложениях. Биполярные и униполярные шаговые двигателиУниполярные двигатели проще в управлении и требуют меньше управляющих элементов. Ранее этот фактор имел решающее значение в цене готового решения. После того, как значительно повысился уровень интеграции и снизилась цена микросхем драйверов, униполярные шаговые двигатели потеряли это преимущество. Если сравнивать их между собой, то биполярный ШД имеет более высокую удельную мощность. При одних и тех же размерах биполярные двигатели обеспечивают больший момент, который пропорционален магнитному полю, создаваемому обмотками статора. Именно биполярные шаговые двигатели в основном выпускаются производителями. Схема управления биполярным шаговым двигателемДвигатель имеет две обмотки, каждая из которых управляется мостовой схемой ключей. На рисунке 1 показана базовая схема управления биполярным шаговым двигателем.
Первый этап интеграции драйверов шагового двигателяПервым этапом интеграции стала реализация в одном корпусе элементов моста и простой логики управления его ключами. Примером такой микросхемы является UC3717 фирмы Unitrode (в настоящее время часть TI), которая была разработана до 1995 г. Для управления двигателем требовалось использовать две такие микросхемы и внешний контроллер шаговых перемещений. Применялся линейный токовый режим с большими потерями мощности на обмотках и биполярных транзисторах. Датчики токовой перегрузкиВ структуру драйвера стали вводить датчики выходного тока для слежения за токовой перегрузкой в мостовых схемах. Примером такого драйвера явилась микросхема TLE4729G Infineon. Контроль тока производился отдельно в каждом мосту (в нижнем плече) через внешний резистивный датчик. Сигналы перегрузки по каждому каналу управления обмотками были доступны внешнему управляющему контроллеру в виде сигналов ошибки (открытый коллектор). Уменьшение потерь мощности и защита от перегрузокНа следующем этапе эволюции структуры драйвера для снижения потерь в мостовых схемах биполярные транзисторы заменили на DMOS. Кроме того, стал использоваться метод ШИМ токового управления, который позволил значительно уменьшить рассеиваемую на драйвере мощность. В структуре драйвера появились схемы защиты от перегрузки по току и перегрева кристалла, схемы обнаружения обрыва обмоток и короткого замыкания. Был добавлен режим энергосбережения. Микрошаговое управлениеНа рисунке 2 показаны диаграммы сигналов управления обмотками шагового биполярного двигателя для различных режимов. Обычно используется полношаговый или полушаговый режимы. Драйверы для их поддержки существенно проще и дешевле.
Упрощение интерфейса управленияНа следующем этапе в структуру драйвера была добавлена логика, которая упростила управление двигателем и снизила нагрузку на внешний контроллер. Отныне для управления вращением вала на один шаговый угол требовались всего два сигнала — сигнал направления DIR и тактовый сигнал CLK (или NXT), задающий скорость вращения. Этот интерфейс впервые появился у драйверов Allegro Microsystems и в дальнейшем стал использоваться в драйверах других производителей. Обратная связь. Датчик рассогласования угла поворота валаШаговые двигатели имеют ряд особенностей управления, связанных с инерционностью вала двигателя с нагрузкой и дискретностью движений вала. После выполнения каждого шага под управлением токовых импульсов, поданных на обмотки, производилась фиксация вала за счет закорачивания цепей обмоток (режим Slow) или переполюсовки сигналов для более быстрой фиксации (Fast) (см. рис. 3).
Адаптация параметров управленияПосле оценки сигнала обратной связи можно выработать стратегию для изменения параметров управляющих сигналов. Например, если ситуация соответствует зоне проскока на шаг вперед, значит, для данного скоростного режима недостаточна сила торможения. В этом случае можно уменьшить ток активной фазы или использовать режим быстрого торможения. В руководстве по драйверам приводятся методики для выбора оптимальных параметров управления. Для адаптации параметров управляющих сигналов под конкретные параметры двигателя и режим движения, а также возможности динамической подстройки параметров сигналов для устранения потери шага, резонансного эффекта, повышения динамики на больших скоростях был добавлен последовательный интерфейс и соответствующие схемы цифровой регулировки параметров. Параметры загружались в соответствующие режимные регистры. Этот уровень был впервые использован в микросхемах драйверов Allegro Microsystems, а затем появился в структурах драйверов STMicroelectronics, TI, Infineon. Драйверы четвертого поколенияК началу разработки компанией AMIS своей архитектуры драйверов на рынке уже присутствовали драйверы шаговых двигателей, которые имели, с одной стороны, достаточно высокий уровень интеграции, а с другой — набор функциональных параметров, обеспечивавших реализацию оптимальной и дешевой схемы управления. В качестве примера такого драйвера можно привести драйвер-контроллер А3992 Allegro Microsystems. Для его управления использовался ШИМ, в мостовых схемах — полевые ключи; были реализованы различные типы защит от перегрузок. Загрузка параметров и управление движением производилась через последовательный интерфейс. Поддерживался режим микрошага. В обеих мостовых схемах использовались два внешних резистивных токовых датчика для контроля перегрузки. Для улучшения формы кривой при микрошаговом режиме в А3977 применялось автоматическое изменение режима спада тока в зависимости от текущего микрошага (Mixed Decay Mode). Архитектура серии драйверов AMIS-30xxxПри ее разработке требовалось создать модульную архитектуру для реализации линейки микросхем с функциональными параметрами, ориентированными на различные варианты применения с разными уровнями цен. Степень интеграции и функциональности должна была соответствовать лучшим на то время образцам интегральных драйверов-контроллеров. В архитектуре требовались модули, обеспечивавшие расширенные функциональные возможности. На рисунке 4 показана модульная архитектура линейки драйверов AMIS-30xxx.
Размер микрокорпуса NQFP32 — всего 7×7мм. Семейство образовано двумя сериями драйверов AMIS-305xx (четыре микросхемы) и AMIS-306xx (три микросхемы). Они отличаются некоторыми функциональными элементами, применением и, что особенно важно, ценой. Таблица 1. Основные технические характеристики однокристальных драйверов/контроллеров ШД компании ON Semiconductor
Особенности серии AMIS-305xxПервая серия микросхем AMIS-305xx (см. рис. 5) имеет простой пошаговый режим управления движения валом. При разработке большинства современных приложений она может служить отличной и недорогой альтернативой драйверам Allegro Microsystems, Infineon, Toshiba, TI, National Semiconductor, ROHM, обеспечивая функциональную совместимость. Их интерфейс управления образован последовательным портом SPI для конфигурирования и мониторинга и специализированными линиями ввода-вывода, в т.ч. для управления ШД.
Работая совместно с внешним микроконтроллером, ИС AMIS305xx выполняет преобразование заданной команды управления путем генерации на выходе драйверного каскада ШИМ-сигналов. Важным преимуществом AMIS-305xx является реализация слежения за рассогласованием угла поворота вала за счет контроля сигнала противо-ЭДС на обмотках двигателя через вывод SLA. Эта функция открывает широкие возможности по контролю и анализу работы ШД, обнаружению пропуска шага и возврата на шаг назад, введению обратных связей по положению и скорости, не требуя применения каких-либо дополнительных внешних компонентов. Характеристики серии AMIS-306xxСерия имеет три характерных отличия от AMIS-305xx:
Программирование траектории движенииДрайвер AMIS-306xx управляется командами высокого уровня, которые подаются через I2C или LIN-интерфейс. Алгоритм управления AMIS-306XX реализован в виде конечного автомата, т.е. разработчику следует подать команду переместить двигатель в определенное положение, предварительно задав необходимое ускорение и максимальную скорость, а также требуемый размер микрошага. Фазы разгона и торможенияОпределяются рядом уровней нарастающих или спадающих напряжений, которые будут использоваться при выполнении соответствующей фазы по команде, поданной через сетевой интерфейс. Хост-контроллер при этом освобождается от локального контроля данных процессов. Для контроля используется встроенный запрограммированный пользователем автомат. Заданы начальные и конечные точки процессов, определены ряды значений, устанавливающие степень ускорения и торможения. Выбор: AMIS-305xx или AMIS-306xx?Следует учесть, что драйверы AMIS-306xx стоят дороже, чем AMIS-305xx. Выбор за разработчиком. Собственно, наличие счетчика числа шагов не всегда облегчает задачу, если в устройстве так или иначе используется микроконтроллер либо DSP. Расчет траектории производится программно. В большинстве приложений ресурс управляющего микроконтроллера достаточен для того, чтобы решать сложные задачи в реальном масштабе времени. Поскольку не во всех случаях потребуются предельные режимы движения шагового двигателя, то не понадобится и сложный алгоритм управления динамическими параметрами драйвера. Реализованный в микросхеме интерфейс SPI можно использовать для задания таких параметров драйвера как амплитуда тока, шаговый режим, частота ШИМ. Микросхема драйвера, в свою очередь, передает в микроконтроллер статусы флагов состояния. В состав обоих семейств драйверов шаговых двигателей ON Semiconductor входит обратная связь, которая позволяет сравнивать электрическое и расчетное положение ротора, что можно использовать для контроля функционирования двигателя. Концепция интеллектуального шагового двигателяДостигнутый благодаря новой технологии уровень интеграции позволил получить миниатюрный драйвер и уменьшить число сигналов управления. Возможность объединения в одной ИС аналоговых и силовых каскадов на повышенные напряжения, а также низковольтных цифровых каскадов сделало возможным появление полностью интегрированных контроллеров ШД. Собственно двигатель получил цифровой интерфейс. Реализованные на базе таких ИС платы контроллеров обладают столь малыми размерами, что становятся частью двигателя, который в таком случае можно назвать интеллектуальным. Литература1. К. Староверов. Интегральные решения ON Semiconductor для управления шаговыми двигателями//Новости электроники №5, 2009.
|
![]() Комментарии читателейNASA хочет "заселить" Марс роями цикадоподобных роботов Marsbee [1] Производители и дистрибьюторы светотехники [2] Безмостовой ККМ-преобразователь с КПД выше 98% и коэффициентом мощности 0,999. Часть 3 [4] Gartner: внедрение систем ИИ позволит увеличить количество новых рабочих мест [1] Горячие темы |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|